INTERACTION OF AN ELASTIC BOUNDARY WITH A
VISCOUS SUBLAYER OF A TURBULENT BOUNDARY LAYER

B. N. Semenov

The boundary region of a turbulent boundary layer contributes greatly to the drag. Intense
turbulence is generated in this region, Below we investigate the interaction of an elastic
boundary with a viscous sublayer for a decrease in the Reynolds stresses, and for a cor-
responding decrease in the drag. It does not seem possible to investigate the general case.
Therefore, the problem is solved within the framework of the limitations made by Stern-
berg [1] for the theory of a viscous sublayer in a turbulent flow near a solid smooth wall,

We consider the system consisting of the three equations of motion and the equation of continuity
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Here p is the pulsed pressure; v is the kinematic coefficient of viscosity; p is the fluid density; and
u,v, and w are the components of the pulsed velocity in the direction of the coordinate axes.

We assume that it is possible to expand the pulsations in a2 Fourier series and carry out operations
on the separate terms.

The variation in velocity pulsations across the sublayer (along y) is most significant in comparison
with their variation along the flow (along x) or in the z direction; therefore, the latter two are not considered.
We seek a solution in the sublayer in the form

u = Re {h (y) exp i (kz + k,z — PO}

= Re (g () exp i (ka7 + hz — P1)) @
= Re {k (y) exp li (ko + k.2 — B1)]}
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Here h(y), g(y), and k(y) are the unknown complex functions, g is the angular frequency, and kx is a
wave number such that the velocity of perturbation translation in the flow direction is

U,= ﬁ]kx (3)

The pulsed pressure is

p = Re {psexp li (kar +k,z — H1)1} @

Here py is also a complex qﬁantity.

The boundary conditions are written as follows, The sticking condition for the fluid must be satisfied
at the wall, ie.,

u=w=20 (5)
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The wall is deformable; therefore, from the nonflow condition we obtain
U= Re{%exp[i(ky—}—k,z—Bt—[—ﬂ)]} (6)

Here p, is the amplitude of the pulsed pressure at the wall, and Cj is the dynamic rigidity of the
elastic boundary [2]. For Cq —>« we obtain v = 0, i.e., the boundary condition for a rigid boundary; @ is the
angle of phase shift between the pressure and the displacement of the boundary, which is one of the funda-
mental parameters in the theory of oscillations [2].

For a passive coating, we have 0 = 6 = 180°. The phase-shift angle is a function of the frequency 3.
At the outer boundary of the sublayer we assume the pulsations in velocity u and w to be known

u = Re {Cy exp [i (ke -+ k.2 — P11}

w = Re {Bg, exp [i (kzx +k,z — pOI} (0

The problem is solved under the assumption that 8p/8y = 0. in the sublayer. Furthermore, we as-
sume w ~ u, where the proportionality coefficient is constant in the sublayer, in principle, different for each
harmonic and assumed known, TFollowing the scheme of Sternberg [1]

w = utg®, Ay =h,tgd (8)

where ¢ is the angle of skewedness of the pulsations, In this case the second boundary condition (7) is re-
placed by the relation

120 = Bg./Cse

In order to solve the formulated problem, it is sufficient to take into account the assumptions made
about the written boundary conditions. In practice, it is necessary to solve only two of the four equations
of (1) — the first and the last. The third equation is similar to the first.

The expression for the longitudinal pulsation of the velocity u, obtained by integration of the first of
equations (1) with account of the two boundary conditions from (5) and (7),is similar to the equation from [1].
The square of the root-mean-~square pulsation <11¢23> is calculated as the real part of half the product of the
amplitude h and the complex-conjugate quantity h

ue 1z
1—/;‘2,?=1—2e"’cosn+e-2", n= <_2€:7> y (9)

Here 1 is the dimensionless ordinate.

This solution differs from the Sternberg solution by only a constant. The magnitude of C, should be
determined experimentally or theoretically from the interaction of the elastic boundary with the turbulent
core. For example, can use an approximate energy formulation to determine Cg. In this case, when ab-
sorption by the wall of energy of pulsations from the core is minimal, Co— C, where C is constant for the
outer boundary of the sublayer near a solid wall [1].

From the last of equations (1), taking account of the boundary condition (6), we determine the trans-
verse velocity pulsation
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The written value of the amplitude of the transverse pulse velocity can be represented as the sum of
two components

8. =8 +8& (g = ipeetB/Cy) (11)

The quantity g, characterizes the action of the elastic boundary on the transverse velocity pulsation,
which proves to be constant in the sublayer. The component g depends on the elastic properties of the wall,
and is expressed only in terms of the coefficient Cy,. With increasing rigidity of the boundary, i.e., for
C4q — =, we have gy — 0.
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04 We can now calculate the change in Reynolds stresses in the sub-

‘K”/"‘\\\ 0180 layer as a result of the action of the elastic boundary. The Reynolds
ST ™ < 1 stress is calculated for each individual component of the pulsation
g ,' - 7 = ~_ 2 == A harmonic, and is determined by the correlation {(uv)g:
‘\'\\'\ e b _
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i \\ N ~_ | e=13° Here the overbar denotes a conjugate quantity. To calculate gy
'\\\ —] . we must know the pulsed pressureat the elastic boundary.
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.\\}""4‘3:"5 In the sublayer we have 9p/8y = 0; therefore, the pressure can
i 85807 1 e ] be determined at its outer boundary for ;.
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Fig. 1 To calculate p we use Eq. (13) of [1], which already takes into
account the convective terms, For n = Ny, we have
U v, rdly
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i T TN —— where U; is the known velocity of the mean flow, and u; and v; are the
s - /> pulsed velocities for n;.
- / ’ /,_—B="i_ We assume that it is possible to calculate (uv), neglecting the
5 74 ’_> change in p with change in v because of the action of the elastic bound-
AN ary.
/ / In this case the Reynolds stress in the sublayer around it is
’ 1 " written as follows:
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In Eq. (13) the term in square brackets determines the Reynolds stress near the solid boundary. The
additional terms obtained by taking account of the elastic properties of the boundary can give both positive
or negative contributions to the turbulent friction, depending on these properties. It is experimentally de-
termined that the velocity of transport of turbulence Uy, = 0.8U,. Thus, for a very broad band of frequen-
cies practically for the entire ordinarily considered bond, we have U; < Uy.

For most of the interesting nondetached flows we have dU/dy > 0 over the entire boundary-layer flow,

Therefore, the Reynolds stress should decrease from the action of the elastic boundary if Ky > 0and
Ky > 0, while it should increase if Ky < 0 and Ky, < 0. From the solution (9) it follows that n7 = 5. For
convenience in calculation we set n; = 37/2. Figures 1 and 2 present the results of calculation of the de-
pendence of the coefficients Ky and Ky on  for some values of the phase-shift angle.

An analysis of Eq. (14) shows that the term with K;; will give an increase in the Reynolds stress over
practically the entire range of n for 6 < 135°, For § > 135° in the range of small n we have Ky > 0; how-
ever, this term gives a decrease of the Reynolds stress in the sublayer in the integral sense ( Ky ) > 0)
only for # > 173°. The quantity K, attains its maximum absolute value for § = 90°,

An analysis of Eq. (15) shows that the term with Ky ensures a decrease in the Reynolds stress over
the entire range of n for 7° < 6§ < 142°, where the maximum efficiency is attained also at ¢ = 90°. In the
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40— integral sense this term ensures a decrease in the Reynolds stress
za—/’ x . .7 %0 over the entire range of phase-shift angles for a passive coating
e / ((Kyy > 0).

8 \Y ®o0 " /// It is clear that since the contribution of the terms with K;; and
20 \ /) with Ky are opposite, the attainment of a positive efficiency of action
~40) ‘\ V4 /,/ of the elastic coating on the turbulent friction is possible only in cer-
gy 7 tain cases when definite conditions are satisfied. For a scheme of

£ coating with strong damping it is important to show the necessary de-
-aoma s e set: sz saw*  pendence of the phase-shift angle on frequency.
Fig. 3 The optimal dependence can be determined, evidently, from the
' condition of maximum decrease of Reynolds stresses over the entire
sublayer.

If I is the thickness of the sublayer, then their mean change in it (f we set Co =C) is

1 0 <—uvy — (—uv) 2007
T S e W=, G (16)
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Here vq is the dynamic velocity,
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Investigating Eq. (16) at the extremum, we can determine the optimal frequency characteristic, How-
ever, such a calculation would be too inaccurate, since at the present time we do not have exact information
on a number of the parameters that appear in (17). Thus, the effect of 4 can be very substantial because the
term with (Ky) is directly proportional to (1 +tan®$); however, information about the frequency dependence
in the sublayer of the angle of skewness of pulsations, unfortunately, is not yet available, We also need
exact information on the frequency dependence of the velocity of transport of turbulence.

Accuracy is required here because the function G proves to be a comparatively small difference be-~
tween two large terms containing the factors (Ky) and (Ky).

The problem of the interaction of an elastic boundary with a viscous sublayer is solved within the
framework of strong limitations; therefore, it is important to compare the results of the approximate cal-
culation with the experimental data. It is true that there are not enough data in this area. Only Blick and
co-workers [3] succeeded in measuring the characteristics of turbulence in a sublayer near an elastic
boundary. They give data on the change, under the action of an elastic coating, of the spectral density of
energy as a function of frequency for the dimensionless ordinate y/6 = 0.0033, which corresponds to y, =
9.8(y+ = vdy/i). These data are denoted by circles in Fig. 3. It is useful to compare these data with the re-
sults of calculation of the change of Reynolds stresses, since the latter are evidently proportional to the
kinetic energy of turbulence. Figure 3 presents for comparison the results of calculation of the relative
change of Reynolds stresses

{—upd — {— uv)
(—uw)

£_100%

under the action of an elastic boundary, satisfied for y, = 9.8, Uy = 0.8Uy, ¢ =45°. The case in which

Ce = C is denoted by the dashed line, Since the work cited above also presents data for the change in spec-
tral energy density in the turbulent core, we can calculate Co, For the calculation we use the data of Fig.
20 from [3] for y/6 = 0.8. Taking these data into account, we obtain results represented in Fig. 3 by the
solid curve.

From a consideration of Fig, 3 we can note a definite qualitative similarity between the calculation re-
sults and the experimental data.
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The quantitative divergence is not that surprising. It is evident that the convective terms in equations
(1) were neglected., There are other important possible reasons, such as: ignorance of the law of variation
with frequency of the skewedness of the flow, and of the transport velocity. Nevertheless, the qualitative
similarity between the pictures obtained convinces us of the usefulness of the present consideration as a
first step toward explaining the physics of the effect of the elastic boundary on frictional drag.

The authors thanks G. S. Migirenko for advice and remarks given during a discussion of the work,
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